| | | | Analyses | | | | | | | | | | | | | | Manitarina |--|--------------------------------------|------------------|---------------------------|------------------|-------|----------|--------------|------------------|---|------------------|--|----------------------------|------------|------------------|----------|-----|--|------------------|----------|-------------------|----------------------|-----------------------|--------------|---|--|--------|----------------------------------|----------------|-----------------------------|------------------|---------------------------|------------------|-------------|---|--|---|--------------------------------|---| | | | | | | | | | | | | | | Analy | nalyses | | | | | | | | | | 1 | Monitoring | | | | | | | | | | | | | | | Organization | Sampling Location | Sampling
Plan | Matrix | /OCs by TO15 | N 2.5 | est/PCBs | тех | VOC 8260 | PAH 8270 SIM | Aetals 6010/7470 | Chemical Biomarkers (Steranes/tritertanes) | TPH/Saturated Hydrocarbons | TPH G 8015 | TPH D and O 8015 | 00 | 2&G | subsurface dispersant
Suspended Solids (NTHs) | erial dispersant | Toxicity | NIOSH 5506 (SVOC) | (scosity (ASTM D445) | Dispersability (ASTM) | 6h20 ASTM | Specific grav (ASTM) Normal Alkane (8015ish) I SU | Fingerprint | Sulfur | JV Scan (Presence of Dispersant) | JV Scan (%oil) | Diagnostic (cause of death) | | conductivity/ lemp? Depth | 72
1438 | 2.0
M410 | | /OC | 42S (REDELLIO BADGE) | Analytical Turn
Around Time | Purpose | | Organization | Gampling Location | i iaii | IVIATIA | | | | " | - ' | / | | | 一十 | | 旪 | | | <u>ss 0.</u> |) (0 | ╁╴ | - - | + | | ^ | 0) 2 | ╁ | 0) | ╅ | | - | " ' | | ~ - | | T | 1 | - | Albuna filite | Determine air quality Impacts from | | EPA | Plaquemines/Chalmette | X | Air | Х | Χ | | _ | _ | _ | + | | _ | _ | - | \dashv | | + | | + | - | +- | \square | - | | _ | | | | _ | + | + | X X | () | + | Х | | 24 hours | in-situ burn
Establish a baseline of pre-impact | | EPA | SE Louisiama Coast | Х | Sed | | | Х | | ХХ | Х | Х | | | Х | Х | Х | Х | | | Х | | | | | | | | | | | | | | | | | 24 h | our/10 day for tox | conditions | | EPA | SE Louisiama Coast | Х | Wat | | | х | | х | x | X | | | х | х | х | х | 24 hours | Establish a baseline of pre-impact conditions | | | Houma Airport | Λ | product | | | ^ | - | / / | \ \ \ | ^ | | | ^ | ^+ | ^+ | ^ | | Х | + | + | + | | - | | + | + | + | | - | -+ | + | | + | ┿ | + | | ASAP | Determine product constituents | | | Gulf (except pm2.5) | | Air | X | Х | | - | | | + | | _ | | _ | \dashv | - | | - ^ | + | X | + | H | - | | + | + | + + | | _ | - | \dashv | ХХ | () | 7 | X : | X | ASAP | Industrial hygiene | | | Gulf | | Air | ^ | | | | | | 1 | | | | | | | | | + | +^ | 1 | | _ | | | | 1 1 | | | | \dashv | / / | + | + | ^ | ^ | ASAP | Industrial hygiene | | | Gulf Shores (Venice to | | 7 (| | | | _ | | | 1 | | | | _ | \dashv | _ | | | + | + | 1 | H | | | | + | 1 1 | | | _ | \dashv | | + | 十 | - | | | Establish a baseline of pre-impact | | | Pensacola) | | Water | | | | | X X | | Х | | | Χ | Х | 4 | | | | \perp | | | | _ | | | | | | | 4 | 4 | | | 4 | 4 | | | conditions | | NOAA (USCG) | Gulf | Х | Water | | | | | | | | | | Х | | | | | | | | | | | | | | 1 1 | Х | | | | | | | | | ASAP | (SMART Tier 2) VERIFICATION OF FLUORMETRY RESULTS | | | Gulf | ^ | product | | | | - | - | Х | + | | - | ^ | - | \dashv | - | | | + | + | Y | V | V | ХХ | · Y | + | + | ^ | - | + | + | | + | + | + | - | ASAP | Weathered Oil Group | | NOAA (USCG) | Guii | | product | Н | | - | \dashv | | ^ | + | \vdash | - | | \dashv | \dashv | _ | | + | + | + | +^ | ^ | ^ | ^ | \ | + | + + | - | _ | - | + | _ | + | + | + | - | AOAF | Assess anamolus results | | BP (RAT/Entrix) | Gulf | | product/
anomolie
s | | | | | | х | | | | Х | х | | | | | | | Х | Х | х | Х | | Х | | | | | | | | | | | | identified by other parties. OPS
determines whether skimming
operations are warranted | | BP (RAT/Entrix) | Gulf Shores (Venice to
Pensacola) | | Solid | | | | | | Х | | | | Х | Х | | | | | | | | | | | | Х | | | | | | | | | | | ASAP | Assess anamolus results identified by other parties. OPS determines whether skimming operations are warranted | | BP (BP) | E&P Platforms | | Water | Ш | | | | | | | Ш | | Χ | Х | | | | | \bot | \bot | | Щ | | | | | igspace | | | | | | \bot | 4 | | | ASAP | determine oil in intakes | | NOAA (Marine
Mammal Stranding
Network/ Sea Turtle
Stranding and
Salvage Network) | Gulf Shore or Floaters | | Tissue
(Biota) | | | | | | X | | | | X | x | | | | | | | | | | | | | | | X | | | | | | | | | Determine if wildlife was impacted by oil | | BP (Exponent/OSR) | | | Water | | | | Х | | X43 | | Х | Х | | | | | × | (| X | (| | | | | | | Х | | | Х | x | | | | | | ASAP | (SMART Tier 2) Monitoring of Sea
surface of aerial dispersan
application | | | Deep Water Gulf (in | | Water | | | | Х | | X43 | 3 | Х | Х | | | | | × | (| Х | | | | | | | | Х | | | Х | х | | | T | | | | (SMART Tier 2) Monitoring of Sea
surface of aerial dispersan
application | | | Nearshore and | | Water | | | | | | | | | | | | | | | | Х | | | | | | | | | | | | | | | | | | | multiple media for aquatic tox screening | | NOAA (BP) | Deepwater | - | | | | | | | | | | | | | | | х | | | | | | | | | | | | | | $oxed{T}$ | | | | | | ASAP | on going support for subsea
injection of Nalco 9527 | 1 | | | | | | | | | | | |